Search results for "Harnack's inequality"

showing 10 items of 14 documents

Hölder stability for Serrin’s overdetermined problem

2015

In a bounded domain \(\varOmega \), we consider a positive solution of the problem \(\Delta u+f(u)=0\) in \(\varOmega \), \(u=0\) on \(\partial \varOmega \), where \(f:\mathbb {R}\rightarrow \mathbb {R}\) is a locally Lipschitz continuous function. Under sufficient conditions on \(\varOmega \) (for instance, if \(\varOmega \) is convex), we show that \(\partial \varOmega \) is contained in a spherical annulus of radii \(r_i 0\) and \(\tau \in (0,1]\). Here, \([u_\nu ]_{\partial \varOmega }\) is the Lipschitz seminorm on \(\partial \varOmega \) of the normal derivative of u. This result improves to Holder stability the logarithmic estimate obtained in Aftalion et al. (Adv Differ Equ 4:907–93…

Applied Mathematics010102 general mathematicsMathematical analysisRegular polygonSerrin’s problemFunction (mathematics)Directional derivativeLipschitz continuity01 natural sciencesDomain (mathematical analysis)010101 applied mathematicsOverdetermined systemCombinatoricsBounded functionOverdetermined problemHarnack’s inequalityStationary surface0101 mathematicsStabilityMethod of moving planeHarnack's inequalityMathematicsAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct

A priori bounds and multiplicity of solutions for an indefinite elliptic problem with critical growth in the gradient

2019

Let $\Omega \subset \mathbb R^N$, $N \geq 2$, be a smooth bounded domain. We consider a boundary value problem of the form $$-\Delta u = c_{\lambda}(x) u + \mu(x) |\nabla u|^2 + h(x), \quad u \in H^1_0(\Omega)\cap L^{\infty}(\Omega)$$ where $c_{\lambda}$ depends on a parameter $\lambda \in \mathbb R$, the coefficients $c_{\lambda}$ and $h$ belong to $L^q(\Omega)$ with $q>N/2$ and $\mu \in L^{\infty}(\Omega)$. Under suitable assumptions, but without imposing a sign condition on any of these coefficients, we obtain an a priori upper bound on the solutions. Our proof relies on a new boundary weak Harnack inequality. This inequality, which is of independent interest, is established in the gener…

Pure mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsMultiplicity (mathematics)01 natural sciencesUpper and lower bounds010101 applied mathematicsMathematics - Analysis of PDEsBounded functionFOS: MathematicsA priori and a posteriori[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Boundary value problem0101 mathematicsComputingMilieux_MISCELLANEOUSAnalysis of PDEs (math.AP)35A23 35B45 35J25 35J92Harnack's inequalityMathematics
researchProduct

Generalized Harnack inequality for semilinear elliptic equations

2015

Abstract This paper is concerned with semilinear equations in divergence form div ( A ( x ) D u ) = f ( u ) , where f : R → [ 0 , ∞ ) is nondecreasing. We introduce a sharp Harnack type inequality for nonnegative solutions which is a quantified version of the condition for strong maximum principle found by Vazquez and Pucci–Serrin in [30] , [24] and is closely related to the classical Keller–Osserman condition [15] , [22] for the existence of entire solutions.

Pure mathematicsHarnack inequalitynonhomogeneous equationsApplied MathematicsGeneral Mathematicsta111010102 general mathematicselliptic equations in divergence formsemilinear equationsMathematics::Analysis of PDEsType inequality01 natural sciences010101 applied mathematicsMaximum principleMathematics - Analysis of PDEsFOS: MathematicsMathematics::Differential Geometry0101 mathematicsDivergence (statistics)MathematicsHarnack's inequalityAnalysis of PDEs (math.AP)
researchProduct

A tour of the theory of absolutely minimizing functions

2004

A detailed analysis of the class of absolutely minimizing functions in Euclidean spaces and the relationship to the infinity Laplace equation

Class (set theory)Pure mathematicsHarnack's principleApplied MathematicsGeneral MathematicsInfinity LaplacianEuclidean geometryCalculusHarnack's inequalityMathematicsBulletin of the American Mathematical Society
researchProduct

De Giorgi–Nash–Moser Theory

2015

We consider the second-order, linear, elliptic equations with divergence structure $$\mathrm{div} (\mathbb{A}(x)\nabla u(x))\;=\;\sum\limits^n_{i,j=1}\;\partial_{x_{i}}(a_{ij}(x)\partial_{x_{j}}u(x))\;=\;0.$$

Sobolev spacePhysicsPure mathematicsWeak solutionStructure (category theory)Nabla symbolDivergence (statistics)Harnack's inequalitySobolev inequality
researchProduct

Harnack's inequality for p-harmonic functions via stochastic games

2013

We give a proof of asymptotic Lipschitz continuity of p-harmonious functions, that are tug-of-war game analogies of ordinary p-harmonic functions. This result is used to obtain a new proof of Lipsc...

Pure mathematicsApplied Mathematics010102 general mathematicsMathematical analysista111Mathematics::Analysis of PDEs16. Peace & justiceLipschitz continuity01 natural sciences010101 applied mathematicsHarnack's principleHarmonic functionInfinity Laplacian0101 mathematicsEquivalence (measure theory)AnalysisHarnack's inequalityMathematicsCommunications in Partial Differential Equations
researchProduct

Local regularity estimates for general discrete dynamic programming equations

2022

We obtain an analytic proof for asymptotic H\"older estimate and Harnack's inequality for solutions to a discrete dynamic programming equation. The results also generalize to functions satisfying Pucci-type inequalities for discrete extremal operators. Thus the results cover a quite general class of equations.

local Hölder estimateosittaisdifferentiaaliyhtälötABP-estimateApplied MathematicsGeneral Mathematicsp-LaplacianMathematics::Analysis of PDEs35B65 35J15 35J92 91A50elliptic non-divergence form partial differential equation with bounded and measurable coefficientsdynamic programming principleMathematics - Analysis of PDEsHarnack's inequalitytug-of-war with noiseFOS: MathematicsPucci extremal operatorpeliteoriaepäyhtälötAnalysis of PDEs (math.AP)
researchProduct

The boundary Harnack inequality for infinity harmonic functions in Lipschitz domains satisfying the interior ball condition

2008

Abstract In this note, we give a short proof for the boundary Harnack inequality for infinity harmonic functions in a Lipschitz domain satisfying the interior ball condition. Our argument relies on the use of quasiminima and the notion of comparison with cones.

Harnack's principleLipschitz domainHarmonic functionApplied MathematicsMathematical analysisMathematics::Analysis of PDEsBall (mathematics)Lipschitz continuityAnalysisMathematicsHarnack's inequalityNonlinear Analysis: Theory, Methods & Applications
researchProduct

A Carleson type inequality for fully nonlinear elliptic equations with non-Lipschitz drift term

2017

This paper concerns the boundary behavior of solutions of certain fully nonlinear equations with a general drift term. We elaborate on the non-homogeneous generalized Harnack inequality proved by the second author in (Julin, ARMA -15), to prove a generalized Carleson estimate. We also prove boundary H\"older continuity and a boundary Harnack type inequality.

Mathematics::Analysis of PDEsGeneralized Carleson estimateBoundary (topology)Hölder conditionnonlinear elliptic equations01 natural sciencesHarnack's principleMathematics - Analysis of PDEsMathematics::ProbabilityFOS: MathematicsNon-Lipschitz drift0101 mathematicsElliptic PDECarleson estimateHarnack's inequalityMathematics010102 general mathematicsMathematical analysista111Type inequalityLipschitz continuityTerm (time)010101 applied mathematicsNonlinear systemAnalysisAnalysis of PDEs (math.AP)
researchProduct

Removable sets for continuous solutions of quasilinear elliptic equations

2001

We show that sets of n − p + α ( p − 1 ) n-p+\alpha (p-1) Hausdorff measure zero are removable for α \alpha -Hölder continuous solutions to quasilinear elliptic equations similar to the p p -Laplacian. The result is optimal. We also treat larger sets in terms of a growth condition. In particular, our results apply to quasiregular mappings.

Null setElliptic curveHarmonic functionApplied MathematicsGeneral MathematicsMathematical analysisHölder conditionLaplace operatorMathematicsHarnack's inequalityProceedings of the American Mathematical Society
researchProduct